

MEETING ABSTRACT

Peripherally induced Foxp3⁺ regulatory T cells mediates the immunomodulatory effect of intravenous immunoglobulin in an experimental model of allergic airway disease

Amir H Massoud^{1,3*}, Gabriel Kaufman¹, Madelaine Taylor¹, Marianne Beland¹, Ciriaco A Piccirillo², Walid M Mourad³, Bruce D Mazer¹

From Canadian Society of Allergy and Clinical Immunology Annual Scientific Meeting 2013 Toronto, Canada. 3-6 October 2013

Background

IVIg is a polyclonal IgG preparation with potent immune-modulating properties. We demonstrated that IVIg protects against airway hyperreactivity (AHR) and airway inflammation in mouse models of allergic airway disease, accompanied by peripheral induction of Foxp3 ⁺regulatory T-cells (iT_{reg}). The requirement of IVIg-induced iT_{reg} and their antigen-specificity in attenuation of AHR and airway inflammation remains unknown.

Methods

We utilized DEREG mice, carrying a transgenic diphtheria toxin receptor under the control of the Foxp3 promoter, allowing for selective depletion of $Foxp3^+T_{reg}$ by the application of diphtheria toxin (DT). Mice were sensitized and challenged with ovalbumin (OVA) and treated with IVIg. AHR was measured using a FlexiVent small animal ventilator. Total and antigen-specific IgE, as well as pro-inflammatory cytokines levels were determined in serum and alveolar lavage, using ELISA.

Results

In the absence of Treg, due to multiple DT doses before and after the treatment, IVIg was not able to attenuate AHR, diminish IgE levels and Th-2 type cytokine production, nor alleviate airway inflammation. However, mice in which the pre-established T_{reg} cells (n T_{reg}) were depleted before but not following IVIg treatment demonstrated an

* Correspondence: amir.hossein.massoud@umontreal.ca

¹McGill University, Dept. of Experimental Medicine, Montreal, QC, Canada, H2X 2P2

Full list of author information is available at the end of the article

Conclusions

 $T_{\rm reg}$ can be induced from effector CD4⁺T-cells in the absence of $nT_{\rm reg}$. IVIg-induced antigen specific $T_{\rm reg}$ are capable of suppressing all aspects of antigen-driven airway inflammation in an antigen-specific manner.

Authors' details

¹McGill University, Dept. of Experimental Medicine, Montreal, QC, Canada, H2X 2P2. ²McGill University Dept. of Microbiology and Immunology, Montreal, QC, Canada, H3G 1A4. ³Universite de Montral, Dept. Microbiologie et Immunologie Montreal, QC, Canada, H2X 3J4.

Published: 3 March 2014

doi:10.1186/1710-1492-10-S1-A50

Cite this article as: Massoud *et al.*: **Peripherally induced Foxp3**⁺ regulatory T cells mediates the immunomodulatory effect of intravenous immunoglobulin in an experimental model of allergic airway disease. *Allergy, Asthma & Clinical Immunology* 2014 **10**(Suppl 1):A50.

© 2014 Massoud et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.